
loophp/fpt Documentation
Release 1.0.0

Pol Dellaiera

Dec 21, 2022

CONTENTS

1 Documentation 3

2 Code quality, tests and benchmarks 5

3 Contributing 7

4 Changelog 9
4.1 Requirements . 9
4.2 Installation . 9
4.3 Usage . 9
4.4 API . 9
4.5 Tests, code quality and code style . 14
4.6 Contributing . 15

i

ii

loophp/fpt Documentation, Release 1.0.0

Functional Programming Toolbox (FPT for the friends) is a set of stateless helper classes to facilitate the use of func-
tional programming concepts.

CONTENTS 1

loophp/fpt Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

The API will give you a pretty good idea of the existing methods and what you can do with it.

I’m doing my best to keep the documentation up to date, if you found something odd, please let me know in the issue
queue.

3

loophp/fpt Documentation, Release 1.0.0

4 Chapter 1. Documentation

CHAPTER

TWO

CODE QUALITY, TESTS AND BENCHMARKS

Every time changes are introduced into the library, Github run the tests.

The library has tests written with PHPSpec. Feel free to check them out in the spec directory. Run composer phpspec
to trigger the tests.

Before each commit some inspections are executed with GrumPHP, run composer grumphp to check manually.

The quality of the tests is tested with Infection a PHP Mutation testing framework, run composer infection to try
it.

Static analysers are also controlling the code. PHPStan and PSalm are enabled to their maximum level.

5

loophp/fpt Documentation, Release 1.0.0

6 Chapter 2. Code quality, tests and benchmarks

CHAPTER

THREE

CONTRIBUTING

Feel free to contribute by sending Github pull requests. I’m quite reactive :-)

If you can’t contribute to the code, you can also sponsor me on Github or Paypal.

7

loophp/fpt Documentation, Release 1.0.0

8 Chapter 3. Contributing

CHAPTER

FOUR

CHANGELOG

See CHANGELOG.md for a changelog based on git commits.

For more detailed changelogs, please check the release changelogs.

4.1 Requirements

4.1.1 PHP

PHP greater than 7.4 is required.

4.1.2 Dependencies

No dependency is required.

4.2 Installation

The easiest way to install it is through Composer

composer require loophp/fpt

4.3 Usage

TODO

4.4 API

4.4.1 Static constructors

compose

Performs right-to-left function composition. The last argument may have any arity; the remaining arguments must be
unary.

9

https://getcomposer.org

loophp/fpt Documentation, Release 1.0.0

Warning: The result of compose is not automatically curried.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

// phpcs:disable Generic.Files.LineLength.TooLong

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

$closure = static fn (string $first, string $second): string => sprintf('My cats names␣
→˓are %s and %s.', $first, $second);

$composedClosure = FPT::compose()('strtoupper', $closure);

$composedClosure('Izumi', 'Nakano'); // "MY CATS NAMES ARE IZUMI AND NAKANO."

curryLeft

Returns a curried equivalent of the provided function.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

$curryLeft = FPT::curryLeft()('explode');

[$firstName, $lastName] = $curryLeft(' ')('James Bond');

$curriedLeft = FPT::curryLeft()('explode', 3);

[$evil, $good] = $curriedLeft(',')('Jaws,James,Bond')(2);

10 Chapter 4. Changelog

loophp/fpt Documentation, Release 1.0.0

curryRight

Returns a curried equivalent of the provided function.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

$curryRight = FPT::curryRight()('explode');

[$firstName, $lastName] = $curryRight('James Bond')(' ');

$curryRight = FPT::curryRight()('explode', 3);

[$evil, $good] = $curryRight(2)('Jaws,James,Bond')(',');

filter

flip

Returns a new function much like the supplied one, except that the first two arguments’ order is reversed.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

$f = static fn (string ...$x): string => implode('', $x);

$flip = FPT::flip()($f)('a', 'b', 'c'); // bac

4.4. API 11

loophp/fpt Documentation, Release 1.0.0

fold

Returns a single item by iterating through the list, successively calling the reducer function and passing it an accumulator
value and the current value from the array, and then passing the result to the next call.

The iterator function receives two values: $acc and $value.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

include __DIR__ . '/../../../vendor/autoload.php';

use loophp\fpt\FPT;

$reducer = static fn (callable $a) => static fn (callable $b) => static fn (...$xs) =>
→˓$a($b(...$xs));
$accumulator = static fn ($v): string => sprintf('[%s]', $v);
$callable = ['strtoupper', static fn ($s): string => sprintf('%s%s', $s, $s)];

FPT::fold()($reducer)($accumulator)(...$callable)('hello'); // [HELLOHELLO]

identity

A function that does nothing but return the parameter supplied to it.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

FPT::identity()('foo'); // foo

12 Chapter 4. Changelog

loophp/fpt Documentation, Release 1.0.0

map

Takes a function and an iterable, applies the function to each of the iterable values, and yield the result.

nary

Wraps a function of any arity in a function that accepts exactly n parameters. Any extraneous parameters will not be
passed to the supplied function.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

$closure = static fn (...$args): string => implode(';', $args);

$newClosure = FPT::nary()(1)($closure);
$newClosure('a', 'b'); // a

$newClosure = FPT::nary()(2)($closure);
$newClosure('a', 'b'); // a;b

not

Wraps a function in a function that returns the ! of the original function return value.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;

$closure = static fn (string $left, string $right): bool => $left === $right;

$closure('a', 'b'); // false
$closure('a', 'a'); // true

(continues on next page)

4.4. API 13

loophp/fpt Documentation, Release 1.0.0

(continued from previous page)

$notClosure = FPT::not()($closure);
$notClosure('a', 'b'); // true

$notClosure = FPT::not()($closure);
$notClosure('a', 'a'); // false

operator

Apply an operator on two arguments.

This method is curried and take first the operator, then its left and right members.

Available operators are constants in Operator class.

<?php

/**
* For the full copyright and license information, please view
* the LICENSE file that was distributed with this source code.
*/

declare(strict_types=1);

namespace Example;

use loophp\fpt\FPT;
use loophp\fpt\Operator;

FPT::operator()(Operator::OP_PLUS)(40)(2); // 42

partialLeft

partialRight

reduce

thunk

uncurry

4.5 Tests, code quality and code style

Every time changes are introduced into the library, Github Actions run the tests.

Tests are written with PHPSpec and you can find the coverage percentage on a badge on the README file.

PHPInfection is also triggered used to ensure that your code is properly tested.

The code style is based on PSR-12 plus a set of custom rules. Find more about the code style in use in the package
drupol/php-conventions.

14 Chapter 4. Changelog

https://github.com/loophp/collection/actions
http://www.phpspec.net/
https://github.com/infection/infection
https://www.php-fig.org/psr/psr-12/
https://github.com/drupol/php-conventions

loophp/fpt Documentation, Release 1.0.0

A PHP quality tool, Grumphp, is used to orchestrate all these tasks at each commit on the local machine, but also on
the continuous integration tools.

To run the whole tests tasks locally, do

composer grumphp

or

./vendor/bin/grumphp run

Here’s an example of output that shows all the tasks that are setup in Grumphp and that will check your code

$./vendor/bin/grumphp run
GrumPHP is sniffing your code!
Running task 1/14: SecurityChecker... XXX
Running task 2/14: Composer... XXX
Running task 3/14: ComposerNormalize... XXX
Running task 4/14: YamlLint... XXX
Running task 5/14: JsonLint... XXX
Running task 6/14: PhpLint... XXX
Running task 7/14: TwigCs... XXX
Running task 8/14: PhpCsAutoFixerV2... XXX
Running task 9/14: PhpCsFixerV2... XXX
Running task 10/14: Phpcs... XXX
Running task 11/14: Psalm... XXX
Running task 12/14: PhpStan... XXX
Running task 13/14: Phpspec... XXX
Running task 14/14: Infection... XXX
$

4.6 Contributing

See the file CONTRIBUTING.md but feel free to contribute to this library by sending Github pull requests.

4.6. Contributing 15

https://github.com/phpro/grumphp
.github/CONTRIBUTING.md

	Documentation
	Code quality, tests and benchmarks
	Contributing
	Changelog
	Requirements
	PHP
	Dependencies

	Installation
	Usage
	API
	Static constructors
	compose
	curryLeft
	curryRight
	filter
	flip
	fold
	identity
	map
	nary
	not
	operator
	partialLeft
	partialRight
	reduce
	thunk
	uncurry

	Tests, code quality and code style
	Contributing

